718 research outputs found

    Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling

    No full text
    International audienceThe zinc ferrite (ZnFe2O4) has been obtained in nanocrystalline state by reactive milling in a high energy planetary mill from a stoichiometric mixture of oxides (ZnO and α-Fe2O3). A post milling annealing promotes the solid state reaction, improves the ferrite crystalline state and removes internal stresses. The formation of zinc ferrite was studied by X-ray diffraction and magnetic measurements. The chemical homogeneity and morphology of the powders were studied by X-ray microanalysis and scanning electron microscopy. The mean crystallite size after 16 h of milling was found to be 18 ± 2 nm. The lattice parameter of the obtained ferrite depends on the milling time and subsequent annealing treatment. It is lower than that of zinc ferrite obtained by the ceramic method. The evolution of the magnetization versus milling time is discussed in terms of milling induced cations reorganisation into the spinel structure

    Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite-NiFe2O4 obtained by reactive milling

    No full text
    International audienceNanocrystalline nickel ferrite (NiFe2O4) has been synthesized from a stoichiometric mixture of oxides NiO and alpha-Fe2O3 in a high energy planetary mill. An annealing at 350 degrees C, after milling, was used to improve the solid state reaction. The obtained powders were investigated by X-ray diffraction, magnetic measurements, scanning electron microscopy, X-ray microanalysis and differential scanning calorimetry. The particles size distribution was analyzed using a laser particle size analyser. The nickel ferrite begins to form after 4 h of milling and continuously form up to 16 h of milling. The obtained nickel ferrite has many inhomogeneities and a distorted spinel structure. The mean crystallites size at the final time of milling is 9 +/- 2 nm and the lattice parameter increases with increase the milling time. DSC measurements revealed a large exothermic peak associated with cations reordering in the crystalline structure. The magnetization of the obtained powder depends on the milling time and annealing. After the complete reaction between the starting oxides the milling reduces the magnetization of the samples. The magnetization increases after annealing, due to the reorganization of the cations into the spinel structure

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF
    corecore